Open an umbrella, put its end on the floor, spin it and drop a ball into it. The ball could be a balled piece of paper or handkerchief, or any other light and unbreakable thing. Something will happen you probably wouldn't expect. The umbrella does not accept the present and the thing will crawl up the edge and then flies off in a straight line.
The force that threw the ball out in this experiment is generally called the "centrifugal force", although it would be more appropriate to dub it "inertia". Centrifugal force manifests itself when a body travels in a circle but this is nothing but an example of inertia which is the desire of a moving body to maintain its speed and direction.
We come across centrifugal force more often than you might suspect. If you whirl a stone tied to a piece of string, you can feel the string become taut and seem to be about to break under the action of the centrifugal force. The ancient weapon for hurling stones, the sling, owes its existence to the force. Centrifugal force bursts a millstone, if it is spun too fast and is not sufficiently strong. If you are adroit enough, this force will help you to perform a trick with a glass from which the water doesn't escape, even though it is upside down. In order to do this you'll only have to swing the glass quickly above your head in a circle. Centrifugal force helps a circus bicyclist to do a "devil's loop". It is put to work. In the so-called centrifugal separators it churns cream; it extracts honey from honey-comb; it dries washing by extracting water in centrifugal driers, etc., etc.
When a tram travels in a circular path, e.g. as it turns at a crossing, the passengers feel directly the centrifugal force that pushes them in the direction of the outer wall of the carriage. If the speed is sufficiently large, the carriage could be overturned by the force if the outer rail wasn't laid a bit higher than the inner one: which is why a tram is slightly inclined inwards when it turns. It sounds rather unusual but an inclined tram is more stable than an upright one!
But this is quite the case, though. A small experiment will help explain this to you. Bend a cardboard sheet to form a wide funnel, or better still take a conical bowl if available. The conical shield (glass or metallic) of an electrical lamp would be suitable for our purposes. Roll a coin (small metal disk, or ring) around the edge of any of these objects. It will travel in a circle bending in noticeably on its way. As the coin slows down, it will travel in ever decreasing circles approaching the centre of the funnel. But by slightly shaking the funnel the coin can easily be make roll faster and then it will move away from the centre describing increasingly larger circles. If you overdo it a bit, the coin will roll out.
For cycling races in a velodrome special circular tracks are made and you can see that these tracks, especially where they turn abruptly have a noticeable slope into the centre. A cyclist rides along them in an inclined position like the coin in the funnel) and not only does he not turn over but he acquires special stability. Circus cyclists used to amaze the public by racing along a steep deck. Now you can understand that there is nothing special about it. On the contrary, it would be a hard job for a cyclist to travel along a horizontal track. For the same reason a rider and his horse lean inwards on a sharp turn.
Let's pass on from small to large-scale phenomena. The Earth, on which we live, rotates and so centrifugal force should manifest itself. But where and how? By making all the things on its surface lighter. The closer something is to the Equator, the larger the circle in which it moves and hence it rotates faster, thereby losing more of its weight. If a 1-kg mass were to be brought from one of the poles to the Equator and reweighed using a spring balance, the loss in weight would amount to 5 grammes. That, of course, is not very much of a difference, but the heavier a thing, the larger the difference. A locomotive that has come from Stockholm to Rome loses 60 kg, the weight of an adult. A battle ship of 20,000-tonne displacement that has come from the White Sea to the Black Sea will have lost as much as 80 tonnes, the weight of a locomotive!
Watch the "Can we make it to Mars?" again video between time 9.30 to 11.15
Why does it happen? Because as the globe rotates, it tries to throw everything off its surface just like the umbrella in our earlier experiment. It would succeed were it not for the terrestrial attraction that pulls everything back to the Earth's surface. We call this attraction "gravity". The rotation cannot throw things off the Earth's surface, but it can make them lighter.
The faster the rotation, the more noticeable the reduction in weight. Scientists have calculated that if the Earth rotated 17 times faster, things at the Equator would lose their weight completely to become weightless. And if it rotated yet quicker, making, say, one turn every hour, then the weight lessness would extend to the lands and seas farther away from the Equator.
Just imagine things losing their weight. It would mean there would be nothing you could not lift, you would be able to lift locomotives, boulders, cannons and warships as easily as you could a feather. And should you drop them-no danger, they could hurt nobody since they wouldn't fall down at all, but would float about in mid-air just where you'd let go of them. If, sitting in the cabin of an airship, you wanted to throw something overboard, it wouldn't drop, but would stay in the air. What a wonder world it would be. So you could jump as high as you've never dreamed, higher than sky-scrapers or the mountains. But remember, it would be easy to jump up but difficult to return back to ground. Weightless, you'd never come back on your own.
There would also be other inconveniences in such a world. You've probably realized yourself that everything, whatever its size, would, if not fixed, rise up due to the slightest motion of air and float about. People, animals, cars, carts, ships-everything would move about in the air disorderly, breaking, maiming and destroying. That is what would occur if the Earth rotated significantly faster.
The force that threw the ball out in this experiment is generally called the "centrifugal force", although it would be more appropriate to dub it "inertia". Centrifugal force manifests itself when a body travels in a circle but this is nothing but an example of inertia which is the desire of a moving body to maintain its speed and direction.
We come across centrifugal force more often than you might suspect. If you whirl a stone tied to a piece of string, you can feel the string become taut and seem to be about to break under the action of the centrifugal force. The ancient weapon for hurling stones, the sling, owes its existence to the force. Centrifugal force bursts a millstone, if it is spun too fast and is not sufficiently strong. If you are adroit enough, this force will help you to perform a trick with a glass from which the water doesn't escape, even though it is upside down. In order to do this you'll only have to swing the glass quickly above your head in a circle. Centrifugal force helps a circus bicyclist to do a "devil's loop". It is put to work. In the so-called centrifugal separators it churns cream; it extracts honey from honey-comb; it dries washing by extracting water in centrifugal driers, etc., etc.
When a tram travels in a circular path, e.g. as it turns at a crossing, the passengers feel directly the centrifugal force that pushes them in the direction of the outer wall of the carriage. If the speed is sufficiently large, the carriage could be overturned by the force if the outer rail wasn't laid a bit higher than the inner one: which is why a tram is slightly inclined inwards when it turns. It sounds rather unusual but an inclined tram is more stable than an upright one!
But this is quite the case, though. A small experiment will help explain this to you. Bend a cardboard sheet to form a wide funnel, or better still take a conical bowl if available. The conical shield (glass or metallic) of an electrical lamp would be suitable for our purposes. Roll a coin (small metal disk, or ring) around the edge of any of these objects. It will travel in a circle bending in noticeably on its way. As the coin slows down, it will travel in ever decreasing circles approaching the centre of the funnel. But by slightly shaking the funnel the coin can easily be make roll faster and then it will move away from the centre describing increasingly larger circles. If you overdo it a bit, the coin will roll out.
For cycling races in a velodrome special circular tracks are made and you can see that these tracks, especially where they turn abruptly have a noticeable slope into the centre. A cyclist rides along them in an inclined position like the coin in the funnel) and not only does he not turn over but he acquires special stability. Circus cyclists used to amaze the public by racing along a steep deck. Now you can understand that there is nothing special about it. On the contrary, it would be a hard job for a cyclist to travel along a horizontal track. For the same reason a rider and his horse lean inwards on a sharp turn.
Let's pass on from small to large-scale phenomena. The Earth, on which we live, rotates and so centrifugal force should manifest itself. But where and how? By making all the things on its surface lighter. The closer something is to the Equator, the larger the circle in which it moves and hence it rotates faster, thereby losing more of its weight. If a 1-kg mass were to be brought from one of the poles to the Equator and reweighed using a spring balance, the loss in weight would amount to 5 grammes. That, of course, is not very much of a difference, but the heavier a thing, the larger the difference. A locomotive that has come from Stockholm to Rome loses 60 kg, the weight of an adult. A battle ship of 20,000-tonne displacement that has come from the White Sea to the Black Sea will have lost as much as 80 tonnes, the weight of a locomotive!
Watch the "Can we make it to Mars?" again video between time 9.30 to 11.15
Why does it happen? Because as the globe rotates, it tries to throw everything off its surface just like the umbrella in our earlier experiment. It would succeed were it not for the terrestrial attraction that pulls everything back to the Earth's surface. We call this attraction "gravity". The rotation cannot throw things off the Earth's surface, but it can make them lighter.
The faster the rotation, the more noticeable the reduction in weight. Scientists have calculated that if the Earth rotated 17 times faster, things at the Equator would lose their weight completely to become weightless. And if it rotated yet quicker, making, say, one turn every hour, then the weight lessness would extend to the lands and seas farther away from the Equator.
Just imagine things losing their weight. It would mean there would be nothing you could not lift, you would be able to lift locomotives, boulders, cannons and warships as easily as you could a feather. And should you drop them-no danger, they could hurt nobody since they wouldn't fall down at all, but would float about in mid-air just where you'd let go of them. If, sitting in the cabin of an airship, you wanted to throw something overboard, it wouldn't drop, but would stay in the air. What a wonder world it would be. So you could jump as high as you've never dreamed, higher than sky-scrapers or the mountains. But remember, it would be easy to jump up but difficult to return back to ground. Weightless, you'd never come back on your own.
There would also be other inconveniences in such a world. You've probably realized yourself that everything, whatever its size, would, if not fixed, rise up due to the slightest motion of air and float about. People, animals, cars, carts, ships-everything would move about in the air disorderly, breaking, maiming and destroying. That is what would occur if the Earth rotated significantly faster.